Breadcrumb
Study of alternative back contacts for thin film Cu2ZnSnSe4-based solar cells
Cu2ZnSnSe4 thin film solar cells are usually fabricated on a soda lime glass substrate with a molybdenum (Mo) back contact. It is suspected that degradation in electrical performance occurs due to the formation of a barrier between the absorber and Mo back contact. To overcome such degradation, Titanium Nitride (TiN), Titanium Tungsten (TiW), Chromium (Cr), Titanium (Ti) and Aluminum (Al) deposited on Mo-coated glass substrates are investigated as alternative back contact materials. Physical and electrical characterization as well as photoluminescence measurements are performed. Compositional
Multistability Analysis and Function Projective Synchronization in Relay Coupled Oscillators
Regions of stability phases discovered in a general class of Genesio-Tesi chaotic oscillators are proposed. In a relatively large region of two-parameter space, the system has coexisting point attractors and limit cycles. The variation of two parameters is used to characterize the multistability by plotting the isospike diagrams for two nonsymmetric initial conditions. The parameters window in which the jerk system exhibits the unusual and striking feature of multiple attractors (e.g., coexistence of six disconnected periodic chaotic attractors and three-point attraction) is investigated. The
Influence of Periodic Surface Nanopatterning Profiles on Series Resistance in Thin-Film Crystalline Silicon Heterojunction Solar Cells
In the frame of the development of thin crystalline silicon solar cell technologies, surface nanopatterning of silicon is gaining importance. Its impact on the material quality is, however, not yet fully controlled.We investigate here the influence of surface nanotexturing on the series resistance of a contacting scheme relevant for thin-film crystalline silicon heterojunction solar cells. Twodimensional periodic nanotextures are fabricated using a combination of nanoimprint lithography and either dry or wet etching, while random pyramid texturing is used for benchmarking. We compare these
Implementing earned value management using bridge information modeling
Building Information Modeling (BIM) has widely become an effective tool in engineering and construction fields. It could be used in: generating shop drawings; detecting clashes; estimating quantities; and controlling documents. Applying BIM technology on bridges is named Bridge Information Modeling (BrIM). Bridge Information Modeling (BrIM) is an intelligent representation of bridges since it contains all information needed about bridges through their whole lifecycle. This paper presents the use of Building Information Modeling in cost and time management of infrastructure bridges. BIM-based
Integration of a 2-D periodic nanopattern into thin-film polycrystalline silicon solar cells by nanoimprint lithography
The integration of 2-D periodic nanopattern defined by nanoimprint lithography and dry etching into aluminum-induced crystallization-based polycrystalline silicon thin-film solar cells is investigated experimentally. Compared with the unpatterned cell, an increase of 6% in the light absorption has been achieved thanks to the nanopattern, which, in turn, increased the short-circuit current from 20.6 to 23.8 mA/cm2. The efficiency, on the other hand, has limitedly increased from 6.4% to 6.7%. We show using the transfer length method that the surface topography modification caused by the
Memristive Bio-Impedance Modeling of Fruits and Vegetables
Recent works show that the plants can exhibit nonlinear memristive behavior when excited with low-frequency signals. However, in the literature, only linear bio-impedance models are extensively considered to model the electrical properties of biological tissues without acknowledging the nonlinear behavior. In this paper, we show with experiments, for the first time, the pinched hysteresis behavior in seven fruits and vegetables including tomato, orange, lemon, aubergine, and kiwi which exhibit single pinch-off point, and others such as carrot and cucumber exhibit double pinch-off points (i.e
Implementation and analysis of tunable fractional-order band-pass filter of order 2α
This paper proposes a new design of a 2α-order fractional-order band-pass filter with tunability feature. The proposed filter is approximated with the Continued Fraction Expansion and Matsuda second-order approximations. The realized filter transfer function is based on the Inverse Follow the Leader Feedback configuration, with Operational Transconductance Amplifiers as active elements. As a result, the order of the proposed filter can be adjusted by changing a single parameter, which is the bias current Ibias. A comparison with the previous works is performed, showing the advantage of the
Path Planning Control for 3-Omni Fighting Robot Using PID and Fuzzy Logic Controller
This paper addresses a comparison between some control methods of three Omni wheels firefighting robot due to the variety of maneuverability. To achieve path planning for firefighting robot to reach a specific point with the shortest path, a kinematics model of omni wheel robot is applied with some control algorithms based on PID controller, Fuzzy logic controller and self-tuned PID using fuzzy logic techniques. Hardware prototype has been tested to validate the simulation results. © 2020, Springer Nature Switzerland AG.
Design and Implementation of a Ball and Beam PID Control System Based on Metaheuristic Techniques
The paper introduces a comparative analysis between three meta-heuristic techniques in the optimization of Proportional-Integral-Derivative (PID) controller for a cascaded control of a ball and beam system. The meta-heuristic techniques presented in this study are Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC) and Bat Algorithm Optimization (BAO). The model uses a DC motor with encoder to move the beam and a camera as a feedback for the ball position on the beam. The control theory of the system depends on two loops; the first (inner) loop is the DC motor for position control
Robust Path Tracking of Mobile Robot Using Fractional Order PID Controller
This paper represents the control of the Pioneer-3 Mobile Robot as a complex non-linear system which provides an object for research nonlinear system kinematics and dynamics analysis. In this paper, the system modeling and simulation is divided into two main parts. The first part is the modeling and simulation using MATLAB and the second part is the whole mechanical design and its characteristics as a function of the motor speed and the torque depending on the system using Virtual Robot Environment Program (V-REP). The study uses Proportional–Integral–Derivative (PID) and Fractional Order PID
Pagination
- Previous page ‹‹
- Page 10
- Next page ››