btbanner.jpg
Conference Paper

NU-Net: Deep residual wide field of view convolutional neural network for semantic segmentation

By
Samy M.
Amer K.
Eissa K.
Shaker M.
Elhelw M.

Semantic Segmentation of satellite images is one of the most challenging problems in computer vision as it requires a model capable of capturing both local and global information at each pixel. Current state of the art methods are based on Fully Convolutional Neural Networks (FCNN) with mostly two main components: an encoder which is a pretrained classification model that gradually reduces the input spatial size and a decoder that transforms the encoder's feature map into a predicted mask with the original size. We change this conventional architecture to a model that makes use of full resolution information. NU-Net is a deep FCNN that is able to capture wide field of view global information around each pixel while maintaining localized full resolution information throughout the model. We evaluate our model on the Land Cover Classification and Road Extraction tracks in the DeepGlobe competition. © 2018 IEEE.