btbanner.jpg

Spectral efficiency improvement with SISO and SIMO in M-QAM over millimeter-wave links

This paper proposes a spectral efficiency improvement technique for millimeter wave (mmWave) links. The proposed technique provides an efficient utilization of the mmWave link capacity. This technique is applied in three cases the single-input single-output (SISO), single-input multiple-output (SIMO) with the maximal ratio combining and with the equal gain combining. The M-ary quadrature amplitude modulation scheme is used in our work. The power series expansion is used for deriving closed-form expressions for bit error rate (BER) performances in all studied cases. The BER closed-form

Software and Communications

Type-2 Fuzzy Technique for LTE Handover Optimization Based on Cooperated Multi-Point

A seamless and fast handover from one cell to another is one of the main goals of long term evolution (LTE). Hence, the decision of handover is a critical part of the design process of handover. Then the selection of handover parameters must be in a careful and optimal way to have an efficient and successful handover. In this paper, a new optimized CoMP handover algorithm (CoMP HO) for LTE network based on type-2 fuzzy logic is presented. CoMP HO's were implemented by considering the cell-edge users and how to serve them without handover. It is shown via simulation that the proposed CoMP HO's

Software and Communications

Reconfigurable FPGA Realization of Fractional-Order Chaotic Systems

This paper proposes FPGA realization of an IP core for generic fractional-order derivative based on Grünwald-Letnikov approximation. This generic design is applied to achieve reconfigurable realization of fractional-order chaotic systems. The fractional-order real-time configuration boosts the suitability of this particular realization for different applications, including dynamic switching, synchronization, and encryption. The proposed design targets optimized utilization of the FPGA internal resources and efficient employment of the external peripherals: switches and I/O ports in the FPGA

Circuit Theory and Applications
Software and Communications

Study of optical power variations in multi-layer human skin model for monitoring the light dose

Monitoring light dose is essential in much clinical procedures like bio-stimulation, neuro-medicine and photodynamic therapy and in many biophotonics applications such as optogenetics and biosensing. However, monitoring the optical power dissipation as light travels in different layers of tissue is essential in determining the required optical dose. Each part in the human body is protected by different thickness of skin layer; therefore, studying the variations of the optical power when light propagates in different thicknesses of the human skin is essential for safe and accurate medical

Software and Communications
Innovation, Entrepreneurship and Competitiveness

A Digital Hardware Implementation for A new Mixed-Order Nonlinear 3-D Chaotic System

This paper introduces a generic modeling for a 3-D nonlinear chaotic based on fractional-order mathematical rules. Also, a novel modeling for the system using a mixture between integer and fractional-order calculus is proposed. Dynamics of the new realization are illustrated using phase portrait diagrams with complex behavior. Also, a great change in the parameter ranges is investigated using bifurcation diagrams. MATLAB and Xilinx ISE 14.5 are used in system simulations. Furthermore, the digital hardware implementation is done using Xilinx FPGA Virtex-5 kit. The synthesis report shows that

Circuit Theory and Applications
Software and Communications
Mechanical Design

Odd clipping optical orthogonal frequency division multiplexing for VLC system

The Orthogonal Frequency Division Multiplexing (OFDM) has emerged as one of the promising techniques because of its robustness to multipath fading with high-speed data transmission. Classical bipolar OFDM cannot be used in intensity modulated with direct detection (IM/DD) optical communication systems, as visible light communication (VLC), so many optical modulation techniques as asymmetrical clipped optical OFDM (ACO-OFDM) and DC-Clipped OFDM (DCO-OFDM) have been investigated. In this paper, we introduce a novel optical modulation scheme that meets the optical communications requirements. The

Circuit Theory and Applications
Software and Communications

Center pulse width modulation implementation based on memristor

This paper introduces two new versions for memristor-based center pulse-width modulator (PWM) circuits. The proposed circuits use only one comparator which reduces the circuit complexity and power dissipation compared to a former work. The first design is based on two memristors and two resistors while the second design is based on four memristors. Theoretical analysis is provided, and the numerical solution is handled on MATLAB. Simulation is carried out on Cadence software, and the results follow the theoretical analysis. The experiment is implemented using commercial off-the-shelf

Circuit Theory and Applications
Software and Communications

Cancellable face recognition based on fractional-order Lorenz chaotic system and Haar wavelet fusion

Cancellable biometrics is the art of generating distorted or encrypted templates of original biometric templates. The evolution of cancellable biometrics is attributed to the advanced hacking technologies that can capture the original stored biometrics from databases. One of the solutions for this problem is to store cancellable biometric templates in the database rather than the original ones. This paper presents a cancellable face recognition scheme that is based on face image encryption with Fractional-Order (FO) Lorenz chaotic system. The basic idea is to generate user-specific random keys

Circuit Theory and Applications
Software and Communications

Two implementations of fractional-order relaxation oscillators

This work proposes general formulas for designing two different topologies of fractional-order relaxation oscillators. One topology contains an Operational Amplifier and the other one relies on an Operational Trans-Resistance Amplifier. The design procedure hinges on the general fractional-order natural and step responses of RC, which is proved in this work depending on Mittag Leffler function. The proposed topologies can be controlled to generate symmetrical and non-symmetrical square wave signals. They also benefit from the employment of fractional-order capacitors (FOCs), which makes it

Circuit Theory and Applications
Software and Communications

Cole bio-impedance model variations in daucus carota sativus under heating and freezing conditions

This paper reports on the variations in the parameters of the single dispersion Cole bio-impedance model of Daucus Carota Sativus (carrots) under heating and freezing conditions. Experiments are conducted on six samples with recorded live bio-impedance spectra versus temperature. The Cole model parameters are extracted from the measured data using the Flower Pollination Algorithm (FPA) optimization technique and their variations are correlated with well-known bio-chemical and bio-mechanical variations. This represents a non-invasive method for characterizing and measuring the degree of change

Healthcare
Circuit Theory and Applications
Software and Communications
Agriculture and Crops