Breadcrumb
Comparative study of fractional filters for Alzheimer disease detection on MRI images
This paper presents a comparative study of four fractional order filters used for edge detection. The noise performance of these filters is analyzed upon the addition of random Gaussian noise, as well as the addition of salt and pepper noise. The peak signal to noise ratio (PSNR) of the detected images is numerically compared. The mean square error (MSE) of the detected images as well as the execution time are also adopted as evaluation methods for comparison. The visual comparison of the filters capability in medical image edge detection is presented, that can help in the diagnosis of
Fractional order oscillators based on operational transresistance amplifiers
In this paper, a general analysis of the fractional order operational transresistance amplifiers (OTRA) based oscillator is presented and validated through eight different circuits which represent two classifications according to the number of OTRAs. The general analytical formulas of the oscillation frequency, condition as well as the phase difference are illustrated for each case and summarized in tables. One of the advantages of the fractional-order circuit is the extra degrees of freedom added from the fractional-order parameters. Moreover different special cases {α = β ≢ 1, β ≢ α = 1, α ≢
Fractional order oscillators with single non-zero transmission matrix element
This paper presents a study of fractional order oscillator design based on a matrix. The presented oscillator consists of a general two port network and three impedances. Only two port with single element in its transmission matrix is discussed which gives four possible networks. Different combinations for one element have been investigated. The impedances associated with the studied networks are series or parallel connection of resistors in addition to fractional order capacitors. The characteristic equation, oscillation frequency and condition for each combination are introduced. Numerical
Fractional order integrator/differentiator: FPGA implementation and FOPID controller application
This paper introduces two FPGA based design approaches of the fractional order integrator and differentiator using Grünwald Letnikov (GL) definition where fixed window and linear approximation approaches are considered. The main advantage of the linear approximation method is that it reduces the huge memory of the fractional order systems. One of the top applications of fractional calculus is the fractional order Proportional Integral Derivative (FOPID) controller. It has gained a great attention in academic studies and in industrial applications. The proposed approaches have been used as

FPGA Implementation of the Fractional Order Integrator/Differentiator: Two Approaches and Applications
Exploring the use of fractional calculus is essential for it to be used properly in various applications. Implementing the fractional operator Dα in FPGA is an important research topic in fractional calculus; in the literature, only a few FPGA implementations have been proposed due to the memory dependence of the fractional order systems. In this paper, FPGA implementations of fractional order integrator/differentiator based on the Grünwald-Letnikov (GL) operator are proposed. Two algorithms are developed based on look-up table and quadratic and piece-wise linear approximation approaches to
FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov's definition
The fractional-order derivative and integral of Grünwald Letnikov's definition are implemented based on FPGA for different fractional orders. A new algorithm is proposed to implement the GL integral based on linear approximation approach, where the memory dependency of the fractional order systems is eliminated. Moreover, the linear approximation design shows an improvement of 91% and 92% in the error and the mean percentage error compared with prior art. The proposed approach has been designed and implemented based on Verilog Hardware Description Language (HDL) and realized on Nexys 4 Artix-7
FPGA Implementation of Delayed Fractional-Order Financial Chaotic System
This paper proposes digital design and realization on Field-Programmable Gate Array (FPGA) of the Fractional-order (FO) delayed financial chaotic system. The system is solved numerically using the approximated Grünwald-Letnikov (GL) method. For the purpose of FPGA realization, the short memory principle and an approximate GL with limited window size are utilized. Lookup Tables (LUTs) are employed to store the required state values in order to compute the delayed terms. The proposed digital design is implemented on Artix-7 FPGA platform XC7A100T and realized experimentally on the oscilloscope

FPGA implementation of two fractional order chaotic systems
This paper discusses the FPGA implementation of the fractional-order derivative as well as two fractional-order chaotic systems where one of them has controllable multi-scroll attractors. The complete hardware architecture of the Grünwald-Letnikov (GL) differ-integral is realized with different memory window sizes. As an application of the proposed circuit, a complete fractional-order FPGA implementation of Liu chaotic system is introduced with different fractional-orders. Moreover, a fractional-order controllable heart and V-shape multi-scrolls chaotic systems are verified in the case of
Fractional controllable multi-scroll V-shape attractor with parameters effect
This paper is an extension of V-shape multi-scroll butterfly attractor in the fractional-order domain. The system complexity is increased by the new dynamics introduced by the fractional operator which make it more suitable for random signal generator. The effect of system parameters on controlling the attractor shape is investigated and compared with the integer order attractor. Maximum Lyapunov exponent is calculated for both integer and fractional orders attractors to prove the complexity of fractional chaotic system using time series. © 2017 IEEE.
Two topologies of fractional-order oscillators based on CFOA and RC networks
This paper presents two general topologies of fractional order oscillators. They employ Current Feedback Op-Amp (CFOA) and RC networks. Two RC networks are investigated for each presented topology. The general oscillation frequency, condition and the phase difference between the oscillatory outputs are investigated in terms of the fractional order parameters. Numerical simulations and P-Spice simulation results are provided for some cases to validate the theoretical findings. The fractional order parameters increase the design flexibility and controllability which is proved by the provided
Pagination
- Previous page ‹‹
- Page 57
- Next page ››