Breadcrumb
Resistorless memristor based oscillator
This paper introduces the replacement of four and six resistors with four and six memristors at the same time for the modified single input Op-Amps oscillator. The full independency between the oscillation condition and the oscillation frequency facilitates the study. Mathematical analysis is provided for the double replacement of resistors with memristors. The whole range of operation of the memristor is taken in consideration and examined for all kind of replacements. Also, the poles of the system are presented while the existence of two, four and six memristors. © 2014 IEEE.

A generic impedance modeling technique
In this work, a generic impedance modeling technique is proposed. The technique is able to identify a circuit model that is most suitable for fitting measured impedance magnitude data using a genetic algorithm solver as well as the optimum circuit model parameters. Experimentally measured and simulated data sets with different noise levels are used to validate the technique. © 2020 Elsevier GmbH

A fractional-order dynamic PV model
A dynamic model of Photo-Voltaic (PV) solar module is important when it is utilized in conjunction with switching circuits and in grid connected applications. In this paper, a fractional-order dynamical model of a PV source is introduced. The model includes both a fractional series inductor and a parallel capacitor which are in general of two different orders allowing for extra degrees of modeling freedom. An expression for the load current is derived and the step response is investigated for different orders. It is found that the nature of the connections has a dominant effect on the response
Experimental verification of triple lobes generation in fractional memristive circuits
Recently, the triple-lobe behavior is found in the I-V characteristics of some memristive devices generating another non-zero pinchoff point. In this paper, a flux-controlled memristive model is developed to generate the triple-lobe behavior (double pinchoff points) based on a fractional second-order model. The conditions for observing triple lobes are derived besides the coordinates of the pinchoff points. Different scenarios have been considered by changing the model parameters and fractional order. Furthermore, the minimum and maximum achievable conductances are analyzed and mathematically

Realizations of simple fractional-order capacitor emulators with electronically-tunable capacitance
A novel resistorless topology for implementing fractional-order capacitor emulators, based on the employment of Operational Transconductance Amplifiers (OTAs) as active elements, is presented in this paper. The benefits of this topology are its simplicity in terms of component count, compared to other existing topologies in the literature, in addition to its electronic tunability. The performance of the presented topology is evaluated using Cadence and the 0.35 μm CMOS process Design Kit from Austria Mikro Systeme. Experimental results using commercial OTA chips are also provided, where the
Approximation of the fractional-order laplacian Sα as a weighted sum of first-order high-pass filters
A new approximation method of the fractional-order Laplacian operator sα is introduced. The approximation is based on a weighted sum of first-order filter sections and its analytical proof is given. The optimal high-pass filter section parameters that cover six frequency decades are obtained using the flower pollination algorithm while the effect of the number of filter sections on the accuracy of the approximation is investigated. Approximations of fractional-order capacitors of orders α =0.5 and α =0.7 synthesized in Foster-II form are given as a validating example. Further, an active
Fractional-order multi-phase oscillators design and analysis suitable for higher-order PSK applications
Recently, multi-phase oscillator design witnesses a lot of progress in communication especially phase shift keying based systems. Yet, there is a lack in design multi-phase oscillator with different fractional phase shifts. Thus, in this paper, a new technique to design and analyze a multi-phase oscillator is proposed. The proposed procedure is built based on the fractional-order elements or constant phase elements in order to generate equal or different phase shifts. The general characteristics equation for any oscillator is studied to derive expressions for the oscillation conditions and
Fractional order two port network oscillator with equal order
Most of electric circuits can be viewed as a two port network with two terminals defined as input and output ports. In this paper, two different concepts are combined together which are the two port network concept and the fractional calculus to design a general fractional order two port network with equal order. An oscillator case study with three impedances structure has been presented. The three impedances are two equal order fractional capacitors and a resistor. Two different two port network are studied which are Op-amp based circuit and nonideal gyrator circuit. The general oscillation
Fractional-order RC and RL circuits
This paper is a step forward to generalize the fundamentals of the conventional RC and RL circuits in fractional-order sense. The effect of fractional orders is the key factor for extra freedom, more flexibility, and novelty. The conditions for RC and RL circuits to act as pure imaginary impedances are derived, which are unrealizable in the conventional case. In addition, the sensitivity analyses of the magnitude and phase response with respect to all parameters showing the locations of these critical values are discussed. A qualitative revision for the fractional RC and RL circuits in the
Fractional-order impedance transformation based on three port mutators
Due to the importance of the mutators for active circuit realizations, this paper investigates different three port mutator circuits that can be used to implement a floating impedance. The analytical equations that govern the proposed circuits as well as the necessary conditions under different configurations are introduced to realize positive and negative impedances. The proposed circuits are based on second generation current conveyors (CCII) and/or transconductance Amplifier (TA). Moreover, the fractional-order impedance transformation using these mutators are investigated showing the
Pagination
- Previous page ‹‹
- Page 13
- Next page ››